手写的文本识别问题是由计算机视觉社区的研究人员广泛研究的,因为它的改进和适用于日常生活的范围,它是模式识别的子域。自从过去几十年以来,基于神经网络的系统的计算能力提高了计算能力,因此有助于提供最新的手写文本识别器。在同一方向上,我们采用了两个最先进的神经网络系统,并将注意力机制合并在一起。注意技术已被广泛用于神经机器翻译和自动语音识别的领域,现在正在文本识别域中实现。在这项研究中,我们能够在IAM数据集上达到4.15%的字符错误率和9.72%的单词错误率,7.07%的字符错误率和GW数据集的16.14%单词错误率与现有的Flor合并后,GW数据集的单词错误率等。建筑学。为了进一步分析,我们还使用了类似于Shi等人的系统。具有贪婪解码器的神经网络系统,观察到基本模型的字符错误率提高了23.27%。
translated by 谷歌翻译
离线手写数学表达识别(HMER)是数学表达识别领域的主要领域。与在线HMER相比,由于缺乏时间信息和写作风格的可变性,离线HMER通常被认为是一个更困难的问题。在本文中,我们目的是使用配对对手学习的编码器模型。语义不变的特征是从手写数学表达图像及其编码器中的印刷数学表达式中提取的。学习语义不变的特征与Densenet编码器和变压器解码器相结合,帮助我们提高了先前研究的表达率。在Crohme数据集上进行了评估,我们已经能够将最新的Crohme 2019测试集结果提高4%。
translated by 谷歌翻译
草书手写文本识别是模式识别领域中一个具有挑战性的研究问题。当前的最新方法包括基于卷积复发性神经网络和多维长期记忆复发性神经网络技术的模型。这些方法在高度计算上是广泛的模型,在设计级别上也很复杂。在最近的研究中,与基于卷积的复发性神经网络相比,基于卷积神经网络和票面卷积神经网络模型的组合显示出较少的参数。在减少要训练的参数总数的方向上,在这项工作中,我们使用了深度卷积代替标准卷积,结合了封闭式跨跨跨性神经网络和双向封闭式复发单元来减少参数总数接受训练。此外,我们还在测试步骤中包括了基于词典的单词梁搜索解码器。它还有助于提高模型的整体准确性。我们在IAM数据集上获得了3.84%的字符错误率和9.40%的单词错误率;乔治·华盛顿数据集的字符错误率和14.56%的字符错误率和14.56%的单词错误率。
translated by 谷歌翻译
第六版的AI城市挑战赛特别关注了两个领域的问题,在计算机视觉和人工智能的交集中具有巨大的解锁潜力:智能交通系统(ITS),以及实体和砂浆零售业务。 2022年AI City Challenge的四个挑战赛收到了来自27个国家 /地区254个团队的参与请求。轨道1地址的城市规模多目标多摄像机(MTMC)车辆跟踪。轨道2地址为基于天然语言的车辆轨道检索。 Track 3是一条全新的自然主义驾驶分析的轨道,该轨道是由安装在车辆内部的几台相机捕获的,该摄像头专注于驾驶员安全,而任务是对驾驶员的操作进行分类。 Track 4是另一个旨在仅使用单个视图摄像头实现零售商店自动结帐的新轨道。我们发布了两个基于不同方法的领导董事会成员提交,包括比赛的公共负责人委员会,不允许使用外部数据,以及用于所有提交结果的总管委员会。参与团队的最高表现建立了强大的基线,甚至超过了拟议的挑战赛中的最先进。
translated by 谷歌翻译
卷积神经网络的培训是高维和非凸优化问题。目前,在可能无法自信地设置参数学习率的情况下效率低下。有些过去的作品引入了培训深神经网络的牛顿方法。卷积神经网络的牛顿方法涉及复杂的操作。在二阶方法中找到Hessian矩阵变得非常复杂,因为我们主要使用具有图像数据的有限差异方法。纽约州卷积神经网络的方法通过使用子采样的Hessian Newton方法来处理这一点。在本文中,我们使用了完整的数据而不是仅处理部分数据的子采样方法。此外,我们已经使用了并行处理而不是在迷你批量计算中进行串行处理。使用该研究中的并行处理获得的结果,优于先前方法所采取的时间。
translated by 谷歌翻译
流量交叉点的机芯特定车辆分类和计数是各种交通管理活动的重要组成部分。在这种情况下,在最近基于计算机视觉的技术方面的进步,相机已经成为从交通场景中提取车辆轨迹的可靠数据源。然而,随着这种方式的运动轨迹的特性根据相机校准而变化,对这些轨迹进行分类非常具有挑战性。虽然一些现有方法已经解决了具有体面准确性的此类分类任务,但这些方法的性能显着依赖于手动规范的几个感兴趣区域。在这项研究中,我们提出了一种自动分类方法,用于移动基于Vision的车辆轨迹的特定分类(例如右转,左转和通过运动)。我们的分类框架使用此后,采用基于同性的分配策略来指定在交通场景中观察到的不同运动模式,以将传入的车辆轨迹分配给识别的移动组。旨在克服基于视觉轨迹的固有缺点的新的相似度措施。实验结果表明,拟议的分类方法的有效性及其适应不同交通方案的能力,无需任何手动干预。
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
Large training data and expensive model tweaking are standard features of deep learning for images. As a result, data owners often utilize cloud resources to develop large-scale complex models, which raises privacy concerns. Existing solutions are either too expensive to be practical or do not sufficiently protect the confidentiality of data and models. In this paper, we study and compare novel \emph{image disguising} mechanisms, DisguisedNets and InstaHide, aiming to achieve a better trade-off among the level of protection for outsourced DNN model training, the expenses, and the utility of data. DisguisedNets are novel combinations of image blocktization, block-level random permutation, and two block-level secure transformations: random multidimensional projection (RMT) and AES pixel-level encryption (AES). InstaHide is an image mixup and random pixel flipping technique \cite{huang20}. We have analyzed and evaluated them under a multi-level threat model. RMT provides a better security guarantee than InstaHide, under the Level-1 adversarial knowledge with well-preserved model quality. In contrast, AES provides a security guarantee under the Level-2 adversarial knowledge, but it may affect model quality more. The unique features of image disguising also help us to protect models from model-targeted attacks. We have done an extensive experimental evaluation to understand how these methods work in different settings for different datasets.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译